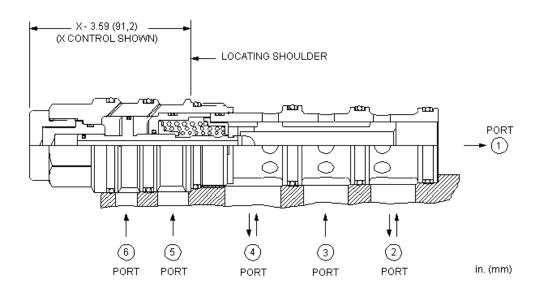

4-way, 2-position, pilot-to-shift directional valve


Capacity: 50 - 200 gpm (200 - 760 L/min.)

Model: DCFF

Product Description

. Two-position, 4-way directional cartridges are spring-offset, 6-port directional valves that can be configured from a choice of 9 different spool options. The supply port is port 3 and all ports will accept 5000 psi (350 bar). Capacity for these pilot-to-shift valves is dependent on the spool type specified.

Technical Features

- All ports will accept 5000 psi (350 bar), including the x and y pilot ports (port 5 and port 6).
- The pilot ports, 5 and 6, are positively sealed from the work ports.

- The reason for the different capacities, or performance limits, for the different spool configurations are flow forces. Flow forces are proportional to flow and pressure drop. Typically, they resist the opening of a passage. Spool configurations that open passages as they spring center are the most susceptible. If the flow forces due to the flow and pressure conditions exceed the centering spring force the valve may not shift completely. Higher flows may be used at lower pressures.
- Leakage listed in technical data is for each path.

Seal Kits - Cartridge

Model Weight

- Hardened spool and sleeve provide consistent and low spool leakage rates and excellent wear characteristics.
- Incorporates the Sun floating style construction to minimize the possibility of internal parts binding due to excessive installation torque and/or cavity/cartridge machining variations.

Viton: 990-064-006

4.15 lb.

1.88 kg.

	U.S. Units	Metric Units		
Cavity	Т-6	T-64A		
Capacity	50 - 200 gpm	200 - 760 L/min.		
Minimum Pilot Pressure Required to Shift Valve	125 psi	9 bar		
Maximum Valve Leakage at 110 SUS (24 cSt)	2 in ³ /min.@1000 psi	30 cc/min.@70 bar		
Pilot Volume Displacement	.42 in ³	6,9 cc		
Series (from Cavity)	Series 4			
Valve Hex Size	1 5/8 in.	41,3 mm		
Valve Installation Torque	350 - 375 lbf ft	475 - 500 Nm		
Seal Kits - Cartridge	Buna: 990-064-007			

Typical Performance <u>PSI</u> Pressure Differential vs. Flow BAR 20.67 ± 300 B to T PtoA 15<u>-</u> 200 10-100 <u>GPM</u> 25 50 75 100 120 <u>LPM</u> 100 200 300 454

DCFF-XXN

	Control		Spool Configuration		Seal Material
Star	ndard Options	Sta	ndard Options	Standa	rd Options
X	Standard Pilot	٨	A to T Center	N	Buna-N
^	Standard Filot	^	A to 1 Center	IN	Dulla-IN
		В	B to T Center	V	Viton
		С	Blocked Center		
		Н	Open Center		
		R	Regen Center		
		Т	Tandem Center		
		W	A and B Bleed to T Center		
		Χ	P to B and A to T Center		
		Υ	A and B to T Center		