High-Pressure Servo Sandwich Filter NOF50-760

Features and Benefits

- Localized protection at the servo helps to eliminate downtime and protect critical applications from contamination-related servo valve failures
- Sandwich style 4-bolt design no additional lines to connect
- Designed to protect these commonly installed servo valves: Moog 760 & 62, Vickers SM4-20 and Parker BD15
- High collapse elements, rated to 3000 psi (210 bar)
- SchroederCheck[™] sampling point available for testing purposes
- Easily applied to new and existing systems
- All steel construction

15 gpm <u>57 L/min</u> 5000 psi <u>345 bar</u>

NESU

NFS30

VE30

DF40

CEAC

CEVAA

NF330

CF60

VF60

Model No. of filter in photograph is NOF501SVZX3760D5.

INDUSTRIAL

AUTOMOTIVE MANUFACTURING

MACHINE TOOL

POWER GENERATION

STEEL MAKING

Applications

KF30

TF5(

KF50

VCE

KEH50

MKF50

KC65

FOF60-03

PAPER INDUSTRY

MOBILE VEHICLES

Flow Rating:

Up to 15 gpm (57 L/min) for 150 SUS (32 cSt) fluids

Max. Operating Pressure: 5000 psi (345 bar)

Min. Yield Pressure: 15,000 psi (1034 bar)

Rated Fatigue Pressure: 4000 psi (276 bar) per NFPA T2-6.1 R2-2005

Temp. Range: -20°F to 225°F (-29°C to 107°C)

Non-Bypass Model: Standard with high collapse elements

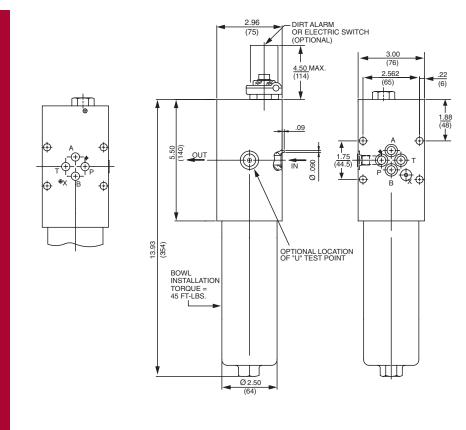
Porting Head: Steel Element Case: Steel

Weight of NOF50-1SV: 17 lb. (7.7 kg)

Element Change Clearance: 4.50" (115 mm)

Filter Housing Specifications

NOF30-05


NOF50-760

NMF30

RMF60

Cartridge Elements

NOF50-760 High-Pressure Servo Sandwich Filter

Metric dimensions in ().

Element
Performance
Information

	Filtration Ratio Per ISO 4572/NFPA T3.10.8.8 Using automated particle counter (APC) calibrated per ISO 4402			Filtration Ratio wrt ISO 16889 Using APC calibrated per ISO 11171	
Element	ß _x ≥ 75	$\beta_x \ge 100$	$\beta_x \ge 200$	$\beta_x(c) \geq 200$	$\beta_x(c) \geq 1000$
SVZX3	<1.0	<1.0	<2.0	4.7	5.8
SVZX10	7.4	8.2	10.0	8.0	9.7

Dirt Holding Capacity

Element	DHC (gm)		
SVZX3	11*		
SVZX10	13*		
Fl	ont Callanaa Batinaa	2000 mid (210 har) for high colleges (7)() consists	*Based on 100 psi terminal pressure

Element Collapse Rating: 3000 psid (210 bar) for high collapse (ZX) versions

Flow Direction: Outside In

Element Nominal Dimensions: 1.75" (45 mm) O.D. x 8.0" (200 mm) long

High-Pressure Servo Sandwich Filter NOF50-760

Type Fluid	Appropriate Schroeder Media
Petroleum Based Fluids	All Z (synthetic) media
High Water Content	3, 10 and 25 μ Z (synthetic) media
Invert Emulsions	10 and 25 μ Z (synthetic) media
Water Glycols	3, 10 and 25 μ Z (synthetic) media

Fluid Compatibility

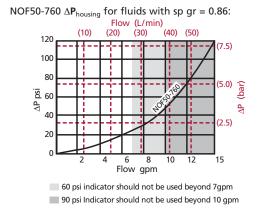
Pressure	Elei Series	ment Part No.	Element selections are predicated on the use of 150 SUS (32 cS petroleum based fluid.		
To 5000 psi (345 bar)	Z Media	SVZX3	1SVZX3		
		SVZX10	1SVZX10		
		SVZX25	1SVZX25		
	Flow	gpm (15	
		(L/min)	0	57	

Element Selection Based on Flow Rate

Pressure Drop

Based on

Flow Rate


and Viscosity

Information

Shown above are the elements most commonly used in this housing.

Note: Contact factory regarding use of E Media in High Water Content, Invert Emulsion and Water Glycol Applications. For more information, refer to Fluid Compatibility: Fire Resistant Fluids, pages 19 and 20.

ΔP_{housing} (760 Porting)

 $\Delta \boldsymbol{P}_{\text{element}}$

 $\Delta P_{element}$ = flow x element ΔP factor x viscosity factor El. ΔP factors @ 150 SUS (32 cSt):

SVZX3 1.00 SVZX10 .52

If working in units of bars & L/min, divide above factor

Viscosity factor: Divide viscosity by 150 SUS (32 cSt).

KC65

NOF50-760

sp gr = specific gravity

Sizing of elements should be based on element flow information provided in the Element Selection chart above.

 $\Delta P_{\text{filter}} = \Delta P_{\text{housing}} + \Delta P_{\text{element}}$

 $\Delta P_{\text{housing}} = 30.0 \text{ psi } [2.1 \text{ bar}]$

Determine ΔP at 8 gpm (30 L/min) for NOF501SVZX1076090D5 using 150 SUS (32 cSt) fluid.

Solution:

$$\Delta P_{\text{element}} = 8 \times 0.52 \times (150 \div 150) = 4.2 \text{ psi}$$

or
= [30 x (0.52 ÷54.9) x (32÷32) = 0.3 bar]

$$\Delta P_{total}$$
 = 30.0 + 4.2 = 34.2 psi
or
= [2.1 + 0.3 = 2.4 bar]

F50-760 High-Pressure Servo Sandwich Filter

Filter Model Number Selection

How to Build a Valid Model Number for a Schroeder NOF50: BOX 1 BOX 2 BOX 3 BOX 4 BOX 5 BOX 7

BOX 8 NOF50

Example: NOTE: One option per box BOX 3 BOX 5 BOX 1 BOX 2 BOX 6 BOX 7 BOX 8 NOF50 SVX3 760 D5 = NOF501SVX3760D5

BOX 1 BOX 2 Filter Series Number of Elements 1 NOF50

Element Part Number SVX3 = S size 3 μ high collapse media SVX10 = S size 10 μ high collapse media

BOX 3

Seal Material Omit = Buna N V = Viton® SVX25 = S size 25 µ high collapse media

BOX 8

BOX 4

Porting 760 = Moog servo configuration

BOX 5

BOX 6 Indicator

Setting Omit = 60 psid 90 = 90 psid

Optional Test Point Omit = None U = Series 1215 7/16"-20 UNF Schroeder Check® Test Point installation

BOX 7

Dirt Alarm® Options Omit = None Visual D5 = Visual pop-up (60 psid indicator setting) Visual with D8 = Visual w/ thermal lockout Thermal Lockout MS5 = Electrical w/ 12 in. 18 gauge 4-conductor cable MSSLC = Low current MS MS10 = Electrical w/ DIN connector (male end only) MS10LC = Low current MS10 MS11 = Electrical w/ 12 ft. 4-conductor wire Electrical MS12 = Electrical w/ 5 pin Brad Harrison connector (male end only) MS12LC = Low current MS12 MS16 = Electrical w/ weather-packed sealed connector MS16LC = Low current MS16 MS17LC = Electrical w/ 4 pin Brad Harrison male connector MS5T = MS5 (see above) w/ thermal lockout MS5LCT = Low current MS5T MS10T = MS10 (see above) w/ thermal lockout Electrical with MS10LCT = Low current MS10T MS12T = MS12 (see above) w/ thermal lockout Thermal Lockout MS12LCT = Low current MS12TMS16T = MS16 (see above) w/ thermal lockout MS16LCT = Low current MS16T MS17LCT = Low current MS17T Electrical MS13 = Supplied w/ threaded connector & light Visual MS14 = Supplied w/ 5 pin Brad Harrison connector & light (male end) MS13DCT = MS13 (see above), direct current, Electrical w/ thermal lockout Visual MS13DCLCT = Low current MS13DCT with MS14DCT = MS14 (see above), direct current, Thermal Lockout w/ thermal lockout MS14DCLCT = Low current MS14DCT

NOTES:

- Box 3. Replacement element part numbers are identical to contents of Boxes 3 and 4.
- Box 4. Viton is a registered trademark of DuPont Dow Elastomers.
- Box 6. Please note indicator flow limitations on pressure drop graph, previous page.