Hydnet - the specialist in intelligent hydraulic systems
Contact
Counterbalance valves

Counterbalance valves

Counterbalance valves are used in applications where it is necessary to prevent a load from moving when the directional valve is in the closed position. Most spool-type directional valves have some internal leakage, which means they cannot hold a load in a fixed position over an extended period. Therefore can a counterbalance valve be a better solution. A counterbalance valve can also serve as a safety valve in the event of, for example, a hose rupture. In such cases, it should be mounted directly on the cylinder or other actuator. This is preferably done using a banjo manifold, which enables a compact and secure installation with minimal pressure losses and a reduced risk of hose failure.

Read more »
Counterbalance valve

3 ports, non vented, standard

Model
Cavity
Nominal Capacity
Pilot Ratio
CBCB
T-11A
15 gpm (60 lpm )
1,5:1
PDF
STP
CBCY
T-11A
15 gpm (60 lpm )
2:1
PDF
STP
CBCL
T-11A
15 gpm (60 lpm )
2,3:1
PDF
STP
CBCA
T-11A
15 gpm (60 lpm )
3:1
PDF
STP
CBCG
T-11A
15 gpm (60 lpm )
4,5:1
PDF
STP
CBCH
T-11A
15 gpm (60 lpm )
10:1
PDF
STP
CBEW
T-2A
30 gpm (120 lpm)
1:1
PDF
STP
CBEB
T-2A
30 gpm (120 lpm)
1,5:1
PDF
STP
CBEY
T-2A
30 gpm (120 lpm)
2:1
PDF
STP
CBEL
T-2A
30 gpm (120 lpm)
2,3:1
PDF
STP
CBEA
T-2A
30 gpm (120 lpm)
3:1
PDF
STP
CBEJ
T-2A
30 gpm (120 lpm)
3:1
PDF
STP
CBEG
T-2A
30 gpm (120 lpm)
4,5:1
PDF
STP
CBEH
T-2A
30 gpm (120 lpm)
10:1
PDF
STP
CBGB
T-17A
60 gpm ( 240 lpm)
1,5:1
PDF
STP
CBGY
T-17A
60 gpm ( 240 lpm)
2:1
PDF
STP
CBGL
T-17A
60 gpm ( 240 lpm)
2,3:1
PDF
STP
CBGA
T-17A
60 gpm ( 240 lpm)
3:1
PDF
STP
CBGG
T-17A
60 gpm ( 240 lpm)
4,5:1
PDF
STP
CBGH
T-17A
60 gpm ( 240 lpm)
10:1
PDF
STP
CBIB
T-19A
120 gpm (480 lpm )
1,5:1
PDF
STP
CBIY
T-19A
120 gpm (480 lpm )
2:1
PDF
STP
CBIL
T-19A
120 gpm (480 lpm )
2,3:1
PDF
STP
CBIA
T-19A
120 gpm (480 lpm )
3:1
PDF
STP
CBIG
T-19A
120 gpm (480 lpm )
4,5:1
PDF
STP
CBIH
T-19A
120 gpm (480 lpm )
10:1
PDF
STP
Counterbalance valve

3 ports, non vented, semi-restrictive

Model
Cavity
Nominal Capacity
Pilot Ratio
CBBB
T-11A
40 lpm (10 gpm)
1,5:1
PDF
STP
CBBL
T-11A
40 lpm (10 gpm)
2,3:1
PDF
STP
CBBC
T-11A
40 lpm (10 gpm)
3:1
PDF
STP
CBBD
T-11A
40 lpm (10 gpm)
4,5:1
PDF
STP
CBDB
T-2A
80 lpm (20 gpm)
1,5:1
PDF
STP
CBDL
T-2A
80 lpm (20 gpm)
2,3:1
PDF
STP
CBDC
T-2A
80 lpm (20 gpm)
3:1
PDF
STP
CBDD
T-2A
80 lpm (20 gpm)
4,5:1
PDF
STP
CBFB
T-17A
40 gpm (160 lpm)
1,5:1
PDF
STP
CBFL
T-17A
40 gpm (160 lpm)
2,3:1
PDF
STP
CBFC
T-17A
40 gpm (160 lpm)
3:1
PDF
STP
CBFD
T-17A
40 gpm (160 lpm)
4,5:1
PDF
STP
Counterbalance valve

3 ports, non vented, restrictive

Model
Cavity
Nominal Capacity
Pilot Ratio
CBBY
T-11A
20 lpm (5 gpm)
2:1
PDF
STP
CBBA
T-11A
20 lpm (5 gpm)
3:1
PDF
STP
CBBG
T-11A
20 lpm (5 gpm)
4,5:1
PDF
STP
CBDA
T-2A
30 lpm (8 gpm)
3:1
PDF
STP
CBDG
T-2A
30 lpm (8 gpm)
4,5:1
PDF
STP
CBFA
T-17A
15 gpm (60 lpm )
3:1
PDF
STP
CBFG
T-17A
15 gpm (60 lpm )
4,5:1
PDF
STP
CBHA
T-19A
80 lpm (20 gpm)
3:1
PDF
STP
CBHG
T-19A
80 lpm (20 gpm)
4,5:1
PDF
STP
Counterbalance valve

3 ports, non vented, ultra-restrictive

Model
Cavity
Nominal Capacity
Pilot Ratio
CBAB
T-11A
2,55 gpm (10 lpm)
1,5:1
PDF
STP
CBAA
T-11A
2,55 gpm (10 lpm)
3:1
PDF
STP
CBAG
T-11A
2,55 gpm (10 lpm)
4,5:1
PDF
STP
CBAH
T-11A
2,55 gpm (10 lpm)
10:1
PDF
STP
Counterbalance valve

3 ports, non vented, fixed setting, standard

Model
Cavity
Nominal Capacity
Pilot Ratio
CBCLX
T-11A
15 gpm (60 lpm )
2,3:1
PDF
STP
CBCAX
T-11A
15 gpm (60 lpm )
3:1
PDF
STP
CBCGX
T-11A
15 gpm (60 lpm )
4,5:1
PDF
STP
CBCHX
T-11A
15 gpm (60 lpm )
10:1
PDF
STP
Counterbalance valve

3 ports, non vented, fixed setting, semi-restrictive

Model
Cavity
Nominal Capacity
Pilot Ratio
CBBLX
T-11A
40 lpm (10 gpm)
2,3:1
PDF
STP
CBBCX
T-11A
40 lpm (10 gpm)
3:1
PDF
STP
CBBDX
T-11A
40 lpm (10 gpm)
4,5:1
PDF
STP
Counterbalance valve

3 ports, non vented, fixed setting, restrictive

Model
Cavity
Nominal Capacity
Pilot Ratio
CBBAX
T-11A
20 lpm (5 gpm)
3:1
PDF
STP
CBBGX
T-11A
20 lpm (5 gpm)
4,5:1
PDF
STP
Counterbalance valve

3 ports, non vented, fixed setting, ultra-restrictive

Model
Cavity
Nominal Capacity
Pilot Ratio
CBABX
T-11A
2,5 gpm (10 lpm)
1,5:1
PDF
STP
CBAAX
T-11A
2,5 gpm (10 lpm)
3:1
PDF
STP
CBAGX
T-11A
2,5 gpm (10 lpm)
4,5:1
PDF
STP
Counterbalance valve

3 ports, atmospherically referenced, standard

Model
Cavity
Nominal Capacity
Pilot Ratio
CACK
T-11A
15 gpm (60 lpm )
1:1
PDF
STP
CACL
T-11A
15 gpm (60 lpm )
2:1
PDF
STP
CACA
T-11A
15 gpm (60 lpm )
3:1
PDF
STP
CACG
T-11A
15 gpm (60 lpm )
5:1
PDF
STP
CAEK
T-2A
30 gpm (120 lpm)
1:1
PDF
STP
CAEL
T-2A
30 gpm (120 lpm)
2:1
PDF
STP
CAEA
T-2A
30 gpm (120 lpm)
3:1
PDF
STP
CAEG
T-2A
30 gpm (120 lpm)
5:1
PDF
STP
CAGK
T-17A
60 gpm ( 240 lpm)
1:1
PDF
STP
CAGL
T-17A
60 gpm ( 240 lpm)
2:1
PDF
STP
CAGA
T-17A
60 gpm ( 240 lpm)
3:1
PDF
STP
CAGG
T-17A
60 gpm ( 240 lpm)
5:1
PDF
STP
CAIK
T-19A
120 gpm (480 lpm )
1:1
PDF
STP
CAIL
T-19A
120 gpm (480 lpm )
2:1
PDF
STP
CAIA
T-19A
120 gpm (480 lpm )
3:1
PDF
STP
CAIG
T-19A
120 gpm (480 lpm )
5:1
PDF
STP
Counterbalance valve

3 ports, atmospherically referenced, semi-restrictive

Model
Cavity
Nominal Capacity
Pilot Ratio
CABK
T-11A
7.5 gpm (30 lpm)
1:1
PDF
STP
CABG
T-11A
7.5 gpm (30 lpm)
4,5:1
PDF
STP
CABN
T-11A
7.5 gpm (30 lpm)
7:1
PDF
STP
Counterbalance valve

3 ports, non vented without pilot assist, standard

Model
Cavity
Nominal Capacity
Pilot Ratio
CCCA
T-11A
15 gpm (60 lpm )
No pilot
PDF
STP
CCEA
T-2A
30 gpm (120 lpm)
No pilot
PDF
STP
CCGA
T-17A
60 gpm ( 240 lpm)
No pilot
PDF
STP
CCIA
T-19A
120 gpm (480 lpm )
No pilot
PDF
STP
Counterbalance valve

4 ports, vented, standard

Model
Cavity
Nominal Capacity
Pilot Ratio
CWCK
T-21A
15 gpm (60 lpm )
1:1
PDF
STP
CWCL
T-21A
15 gpm (60 lpm )
2:1
PDF
STP
CWCA
T-21A
15 gpm (60 lpm )
3:1
PDF
STP
CWCG
T-21A
15 gpm (60 lpm )
5:1
PDF
STP
CWEK
T-22A
30 gpm (120 lpm)
1:1
PDF
STP
CWEL
T-22A
30 gpm (120 lpm)
2:1
PDF
STP
CWEA
T-22A
30 gpm (120 lpm)
3:1
PDF
STP
CWEG
T-22A
30 gpm (120 lpm)
5:1
PDF
STP
CWGK
T-23A
60 gpm ( 240 lpm)
1:1
PDF
STP
CWGL
T-23A
60 gpm ( 240 lpm)
2:1
PDF
STP
CWGA
T-23A
60 gpm ( 240 lpm)
3:1
PDF
STP
CWGG
T-23A
60 gpm ( 240 lpm)
5:1
PDF
STP
CWIK
T-24A
120 gpm (480 lpm )
1:1
PDF
STP
CWIL
T-24A
120 gpm (480 lpm )
2:1
PDF
STP
CWIA
T-24A
120 gpm (480 lpm )
3:1
PDF
STP
CWIG
T-24A
120 gpm (480 lpm )
5:1
PDF
STP

Selecting the right load holding valve

Counterbalance valves and load holding valves are among the more complex type of hydraulic valves, making it especially important to select the correct model. Choosing the wrong valve can pose serious safety risks—such as the inability to hold a load securely—but can also result in inefficient system performance. Common problems caused by incorrect sizing include inadequate operating speed, system instability (shaking or jerking) or overheating. To ensure that your hydraulic system operates safely and efficiently, we recommend contacting one of our sales engineers. We’ll be happy to help you find the right solution tailored to your application.

Setting the load holding valve

All load holding valves—except for pilot-operated check valves—are set to a specific opening pressure. As a general rule, this pressure should be set to 1.3 times the maximum load pressure. To activate the valve’s function, a pilot pressure is required, which is normally taken from the opposite side of the system, or in some cases via an external pilot line, depending on the application and system design.

Types of check valves

All load holding valves are equipped with a built-in check valve that allows free flow in the non-load-holding direction. These check valves are available with different spring settings, typically 1.7 bar or 0.3 bar. A 1.7 bar spring is recommended for improved system stability, while a 0.3 bar spring is used when minimizing pressure drop is a priority.

Load holding valves with different rilot ratios

There are several options for pilot ratios, with 3:1 being the standard—though both higher and lower ratios are available depending on the application. A 3:1 pilot ratio means that a pilot pressure of 50 bar is required to open the valve against a load of 150 bar. For vertical cylinder applications with hanging loads, a lower pilot ratio is preferable to ensure smooth and controlled movement. In other applications, a higher pilot ratio is generally desirable, as it allows the valve to open with lower pilot pressure—making it easier to lower or move the load.

Load holding valves and back pressure

Be aware that any back pressure in port 2 is added to the valve’s set opening pressure. This is common in systems that include a downstream restriction, such as a throttle or a proportional valve. If back pressure is an issue in your application, we recommend using an externally drained valve, specifically designed to handle such conditions.

Externally drained load holding valves

Externally drained load holding valves are unaffected by back pressure in port 2. In standard valves, back pressure can negatively impact performance, as it directly influences the opening pressure setting. This often results in the need for higher pilot pressure to open the valve, potentially reducing system performance. Externally drained valves are especially recommended in regenerative systems, in applications using meter-out throttling, proportional or servo valves, and in master-slave cylinder configurations where high system stability is required. CW** models have four ports, with a dedicated drain port that should be connected downstream of any restriction. CA** models feature three ports and can be retrofitted in systems where unexpected back pressure has become a problem.

Selecting the right size

Unlike many other hydraulic components, load holding valves should not be oversized. An oversized valve can cause system instability and reduced performance, particularly at low flow rates. To ensure stable operation, versions with lower flow capacity—but with the same cavity—are available.

Pilot-operated check valve or load holding valve

The simplest valve intended for holding loads is a pilot operated check valve. However, this type of valve only has an open or closed positions, and is unable to control the movement of the load. It is also unsuitable for applications where the load is transferred over a vertical position, as it risks moving away. In that case it’s better to choose a load holding valve that is often called “over center-valve”. Additionally, pilot-operated check valves lack a relief function, which is essential to protect the system against pressure buildup due to thermal expansion. While pilot-operated check valves are well-suited for simple applications, in cases where control, safety, or stability is critical, a load holding valve is the better choice. Pilot-operated check valves and load holding valves generally share the same cavity, making them interchangeable in most cases.

Hittar du inte riktigt vad du söker?
Kontakta oss så hjälper vi dig!

Vi vet att varje projekt har sina unika behov. Om du inte hittar den information eller produkt du letar efter i vår produktkatalog eller kunskapsbank är du alltid välkommen att höra av dig. Våra specialister guidar dig rätt och hjälper dig hitta den bästa lösningen.

Här har vi samlat nyttig teknikinformation

I vår kunskapsbank har vi samlat information om våra produkter och dess funktioner. Det kan vara allt från hur SUN Hydraulics skapar sina modellbeteckningar till hur transmissionssystem fungerar eller djupdykning i en ventilfunktion.

Hydnet
EA Rosengrens gata 29
421 32 Västra Frölunda

+46 31 - 499 490
info@hydnet.se

Products

  • Cartridge valves
  • Manifolds
  • Hydraulic valves
  • Electro hydraulics
  • ACE Automation control
  • ACE Motion control
  • ACE Vibration control
  • ACE Safety products
  • Schroeder Filters
  • Rexroth Pumpar och motorer
  • Rexroth Mobil- & kompakthydraulik
  • Accessories

Pages

  • System solutions
  • About Hydnet
  • Services
  • News
  • Partners
  • Contact
  • My Hydnet

Policies

  • Integritetspolicy
  • Cookies
This site is registered on wpml.org as a development site. Switch to a production site key to remove this banner.